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The molecular communication channels of Information Theory (IT) are constructed
within the orbital description of molecular electronic structure using the superposi-
tion principle of quantum mechanics. Two types of such information systems are intro-
duced, called the “geometric” and “physical” channels. The communication network of
the former is determined by all molecular orbitals (MO), occupied and virtual, which
result from the specified set of atomic orbitals (AO). The geometric channel thus reflects
the relative “rotation” of MO relative to AO in the molecular Hilbert space, and the
associated “promotion” of AO in the molecule due to the probability scattering via
the communication network generated by the complete set of MO. They are devoid
of the physical content embodied in the MO-occupations, which distinguish one elec-
tron configuration of the molecule from another. The latter information is included in
the physical AO-promotion channels, which involve the probability scattering via the
occupied MO alone. The probability conditioning is shown to be related to the appro-
priate projection in the orbital Hilbert space. The geometric and the physical (ground-
state) bond indices of the conditional-entropy (IT-covalency) and mutual-information
(IT-ionicity) are generated for the 2-AO model and selected π -electron systems (eth-
ylene, allyl, butadiene, and benzene) in the Hückel approximation. They are shown to
compare favorably with the previously reported IT bond-orders obtained from the two-
electron molecular information channels in atomic resolution.

KEY WORDS: bond multiplicities, conditional probabilities in orbital resolution,
covalent/ionic bond components, information theory of molecules, molecular informa-
tion channels, orbital description, superposition principle

1. Introduction

The molecular orbital (MO) approach to chemical bonds gives a transparent
interpretation of their origin and provides useful measures of their multiplic-
ity (“order”) [1–13]. It generates the standard description of the bonding pat-
terns in molecules and their constituent fragments, against which one ultimately
compares the alternative treatments. The information-theory (IT) has recently
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been shown [14–25] to generate the adequate entropy/information descriptors
of the chemical bonds, e.g., the valence numbers of bonded atoms, the over-
all IT bond multiplicity and its covalent and ionic components. They emerge
in the communication theory of the chemical bond, with the molecule is inter-
preted as the information channel of IT, with the molecular or promolecular
electron probabilities being scattered via the network of the chemical bonds
between the system constituent atoms. It has recently been demonstrated [18]
that both MO and communication theories give rise to similar atomic contri-
butions to the overall bond multiplicity and valence-numbers in the simplest
2-AO model of a single chemical bond resulting from the interaction between
two atomic orbitals (AO). This novel approach provides a complementary infor-
mation-scattering (-flow) interpretation to the covalent and ionic bond compo-
nents.

The molecular information channel in orbital resolution [25] uses the con-
ditional probabilities of AO given MO, or of MO given AO. They are obtained
from the quantum-mechanical superposition principle. This one-electron perspec-
tive is similar to that adopted in the local communication systems implied by the
Hirshfeld [26] division of the molecular electron distributions into densities of
atoms-in-molecules (AIM) [15, 27]. It is in contrast to the two-electron approach,
e.g., those determining the bond descriptors from the communication channels
in atomic resolution [14–23], the so called quadratic valence indices [6–11], and
the average Fermi-hole measures [12, 13]. The two-electron IT approach (see, e.g.,
[23] and refs therein) includes the electron-correlation effects and gives rise to
the novel communication interpretation of the familiar electronic structures of
the classical valence-bond theory [28, 29]. The entropy/information bond indices
have been shown to give rise to the dichotomous covalent and ionic components,
which conserve the overall bond-order in several model systems [15, 17, 18, 23].
The communication theory also generates several alternative strategies for deter-
mining the internal and external bonds of molecular fragments [16, 19, 20, 23].

Several issues, however, still remain to be solved in a more satisfactory
manner. For example, the reduction of the entropic bond-orders in the excited
electronic configurations [15, 22–24], which populate the anti-bonding MO more
strongly compared to the ground-state, presents a challenging problem within
the IT approach. Indeed, these indices are formulated in terms of the electron
probabilities alone, i.e., the diagonal elements of the density matrices in orbital
resolution, which do not reflect the relative phases of AO in the occupied MO,
thus loosing the “memory” about the MO nodal structure. It is the main pur-
pose of this and future works to tackle some of these problems by using the
relevant probability-conditioning schemes, defined by the corresponding projec-
tions in the orbital Hilbert space of the molecular system under consideration.
The connection can be made with the quadratic bond multiplicities of the MO
theory [6–11], by examining the separate orbital sub-channels corresponding to
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the electron-“promotion” and probability-“survival” in the molecule, respectively,
relative to the free-atoms of the “promolecule” [26].

The conditional-entropy descriptors of the system bond covalency and the
mutual-information measures of the system bond-ionicity, which result from the
communication channels in orbital resolution, will be compared with the bond
multiplicities obtained from the associated two-electron information channels in
atomic resolution. These novel concepts will be illustrated for the previously
explored 2-AO model and selected π -bond systems in the Hückel description.
Throughout the paper the entropic quantities are reported in bits, which corre-
spond to the base 2 of the logarithmic measure of information.

2. The molecular communication channels in orbital resolution

2.1. Conditional probabilities

Let the row vector ψ = {ψi } = χC groups the MO defined in the (orthog-
onalized) AO basis set χ = {χk}, 〈χ |χ〉 = {〈χk |χl〉 = δk,l} = I. Here
the rectangular matrix C = {Ck,i } = (Cocc., Cvirt.) groups the correspond-
ing expansion coefficients for both the occupied (Cocc.) and empty (Cvirt.) MO.
For example, the ψ may represent spatial parts of molecular spin-orbitals from
the Kohn–Sham (KS) or unrestricted Hartree–Fock (UHF) theories. In the spin-
resolved approaches one identifies MO of the spin-up and spin-down sets: ψ =
{ψσ }, ψσ = {ψσi } = χCσ , σ = (↑,↓). The LCAO coefficients represent projec-
tions of MO on AO: C = 〈χ |ψ〉 or Cσ = 〈χ |ψσ 〉.

By the superposition principle of quantum mechanics the squares of the
moduli of these orbital projections generate the conditional probabilities of MO
given AO:

P(ψ |χ) = {P(i |k) ≡ Pi,k/Pk = 〈ψi |χk〉〈χk |ψi 〉 ≡ 〈ψi |P̂k |ψi 〉
= 〈χk |ψi 〉〈ψi |χk〉 ≡ 〈χk |P̂i |χk〉},

all∑

i

P(i | k) = 1. (1)

Above, they have been expressed as the relevant expectation values: of the AO
projection operator P̂k = |χk〉〈χk | for ith MO, or of the MO projector P̂i =
|ψi 〉〈ψi | for kth AO. The implicitly defined joint AO–MO probabilities,

P(χ ∧ ψ) = {P(χk ∧ ψi ) ≡ Pk,i = P(k|i)Pi ≡ Pi,k = P(i |k)Pk} (2)

give rise to the normalized AO and MO probabilities, overall and spin-resolved:
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Pχ =
⎧
⎨

⎩Pk =
all∑

i

Pi,k =
all∑

i

∑

σ

Pσi,k ≡
∑

σ

Pσk

⎫
⎬

⎭ ,
∑

k

Pk =
∑

k

∑

σ

Pσk = 1,

Pψ = {Pi =
∑

k

Pi,k =
∑

σ

∑

k

Pσi,k ≡
∑

σ

Pσi },
all∑

i

Pi =
all∑

i

∑

σ

Pσi = 1. (3)

It also follows from Equation (2) that

P(k|i)/P(i |k) = Pk/Pi . (4)

The AO probabilities Pχ = {Pk = Nk/N }, where N = ∑
k Nk is the system overall

number of electrons, reflect the initial AO occupations N = {Nk}. For exam-
ple, the ground-state occupations of the free constituent atoms determine the
reference (promolecular) input probabilities in AO resolution, P

0
χ , before the

bond formation. In Equation (3) we have introduced the joint AO–MO proba-
bilities, for specific molecular spin-orbitals (MSO), e.g., in the UHF or LSDA
theories,

P(χ ∧ ψσ ) = {P(χk ∧ ψσi ) ≡ Pσk,i = P(k|iσ )Pσi ≡ Pσi,k = P(iσ |k)Pk}. (5)

They are implicitly defined by the associated conditional probabilities in the
spin-resolved MO representation,

P(ψσ |χ) = {P(iσ |k) ≡ Pσi,k/Pk = 〈ψσi |χk〉〈χk |ψσi 〉 ≡ 〈ψσi |P̂k |ψσi 〉
= 〈χk |ψσi 〉〈ψσi |χk〉 ≡ 〈χk |P̂σi |χk〉},

all∑

i

P(iσ |k) = 1. (6)

Here, P(k|iσ )] stands for the probability of χk given ψσi , while P(iσ |k) is the
probability of ψσi given χk . These two sets of conditional probabilities are
related (compare equations (2) and (4)):

P(k|iσ )/P(iσ |k) = Pk/P
σ
i . (7)

The spin resolution can be carried out also for atomic orbitals, by separating
the atomic SO (ASO), singly occupied by the spin-up and spin-down electrons,
respectively: χ = {χσ }, χσ = {χσk }, σ = (↑,↓) (see Equation (3)). The
spin-resolved AO probabilities Pσχ = {Pσk = Nσ

k /N } then reflect the initial
occupations Nσ = {Nσ

k } of ASO in the promolecular reference. The renormal-
ized ASO probability vector,

P̄σχ = {P̄σk = Pσk (N/N
σ ) ≡ Pσk /P

σ ≡ P(k |σ ) = Nσ
k /N

σ },
∑

k

P̄σk = 1, (8)
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groups the conditional probabilities P̄σk of observing the ASO, χσk , i.e., χk in the
subsystem of ASO occupied by electrons with the spin orientation σ . They sat-
isfy the appropriate σ -subsystem normalization requirement.

The AO index k in P(i |k) and P(iσ |k) represents a parameter, while the
MO (or MSO) index i (or iσ ) is a variable, as indeed reflected by the normal-
ization relation in equations (1) and (6), which involve summations over all MO
constructed in the given AO space χ , both occupied and virtual. These roles are
reversed in the other set of conditional probabilities, of AO given MO (or MSO):

P(χ |ψ) = P(ψ |χ)T = {P(k|i) ≡ Pk,i/Pi = P(i |k)(Pk/Pi )},
∑

k

P(k|i) = 1, (9)

P(χ |ψσ ) = P(ψσ |χ)T = {P(k|iσ ) ≡ Pσk,i/P
σ
i = P(iσ |k)(Pk/P

σ
i )},∑

k

P(k|iσ ) = 1. (10)

2.2. Geometrical information channels

In IT, the two sets of orbitals, χ and ψ , define the AO-inputs and
MO-outputs of the information system shown in figure 1, with the conditional
probabilities P(ψ |χ) or P(χ |ψ) determining the “communication” connections
between the corresponding orbital events. This channel involves all MO ψ con-
structed within the given basis set χ , both occupied and virtual in the specified
electron configuration of the molecule. It solely reflects the “geometry” of the
orbital Hilbert-space, being devoid of any information about the actual distribu-
tion of electrons among AO or MO. Its communication “noise” thus probes the
probability scattering due to the overlaps (projections) between all AO and MO,
which measure the electron delocalization due to the network of MO for the
specified input probability distribution Pχ . The latter characterizes the electron
configuration of the free atoms of the promolecule, marking either the ground-
or promoted-states of such non-bonded atoms. This promolecular reference
defines the bond origins, against which the molecular electronic structure and the
associated effective electron configuration of bonded atoms will be compared.

P                P( ) P

Figure 1. The “geometric” AO→MO information channel defined by the spinless conditional prob-
abilities of Equation (1). The AO probabilities Pχ (Equation (3)) determine the distribution of the

input signals, in the channel “source,” while the MO probabilities Pψ = PχP(ψ |χ) (Equation
(3)) define the associated probabilities of the ouput signals, in the channel “receiver.” The input

probabilities reflect the initial (promolecular) occupations N of AO in the non-bonded atoms.
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The freedom to manipulate the input probabilities allows one to account
for the “history” of the bond-formation process [14, 15, 23]. For example, in the
simplest 2-AO model a given (molecular) electron distribution may give rise
to different bond descriptors relative to the electron-sharing (covalent) or the
pair-sharing (coordination) references, thus distinguishing the ordinary covalent
bonds, when two atoms contribute a single electron each to form the chemi-
cal bond, from the donor–acceptor (DA) reference, when the two electrons have
been donated by the basic atom [23].

The conditional probabilities of Equations (9) and (10) correspond to the
“reverse” communication scenario, involving the MO-inputs and AO-outputs. In
the actual molecular system, the input probabilities Pψ = {Pi = ni/N } reflect the
MO occupations n = {ni } in the molecular electron configuration of interest,
thus specifying the “physical” initial probabilities. However, when probing the
purely geometric probability scattering in orbital resolution one could explore
the whole MO space in the specified basis set, without any “physical” informa-
tion about the MO occupations, e.g., by using the output probabilities of figure
1. Such information system is schematically shown in figure 2. The information
cascade consisting of the geometrical communication channels shown in figures
1 and 2 is shown in figure 3. It determines the effective geometrical AO→AO+
promotion in the whole MO Hilbert space in the specified AO basis set. The
associated effective information system is shown in figure 4.

The geometric AO→AO+ promotion of figure 4 is defined by the resultant
conditional probability matrix

P(χ+|χ) = P(ψ |χ)P(χ |ψ) ≡ {P(l+ |k ) =
∑

i

P(l|i)P(i |k)

=
∑

i

〈ψi |P̂l |ψi 〉〈ψi |P̂k |ψi 〉 ≡
∑

i

〈ψi |P̂l P̂i P̂k |ψi 〉}. (11)

It should be observed that in the given basis set the projection on the whole
orbital space can be equivalently expressed in terms of AO, MO, and MSO [see
equations (1) and (6)]:

AO∑

k

P̂k =
MO∑

i

P̂i =
MSO∑

i

P̂σi . (12)

P                P( ) + P +

Figure 2. The geometric MO→AO information channel defined by the spinless conditional proba-
bilities of Equation (9). The MO probabilities Pψ of figure 1 now determine the distribution of the

MO-input signals, including both the occupied and virtual MO, while the product P
+
χ = PψP(χ |ψ) =

N
+
/N defines the probabilities of the AO-ouput “signals,” which reflect the geometrically “promoted”

occupations N
+

of AO in the molecule.
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P  P( ) P P( ) +          P +

Figure 3. The information “cascade,” from the initial AO probabilities Pχ of non-bonded atoms

(input) to the geometrically promoted AO probabilities P
+
χ in the MO Hilbert space.

This AO→AO+ probability scattering generates the communication “noise”
measured by the conditional entropy [23, 30] of the geometrically promoted
AO-outputs χ+, given the promolecular AO-inputs χ ,

S(χ+|χ) = −
∑

k

Pk

∑

l

P(l+ |k ) log P(l+ |k ), (13)

which reflects the extra uncertainty due to the electron delocalization among AO,
via the whole system of MO. It should be stressed that these geometrical chan-
nels give equal emphasis to all MO in the specified basis set, thus formally cor-
responding to an equi-ensemble of MO, in which the unbiased (uniform) MO
probabilities (occupations) are equalized.

The complementary IT descriptor of the communication system in figure 4,
called the mutual-information [23, 30] in system AO-inputs and AO+-outputs,

I (χ : χ+) =
∑

k

Pk

∑

l

P(l+ |k ) log[P(l+ |k )/P+
l ] = S(χ+)− S(χ+|χ), (14)

where the Shannon entropy [23, 30, 31] of the output AO probabilities

S(χ+) = −
∑

l

P+
l log P+

l , (15)

measures the amount of information flowing through the channel. We have used
in equation (14) the partial normalization of the joint probabilities P+ = P(χ ∧
χ+) = {Pk P(l+ |k ) ≡ P+

k,l} :
∑

k

P+
k,l = P+

l . (16)

The geometric-promotion channels reflect “rotation” of MO relative to AO in
the molecular Hilbert space. They are devoid of any physical content embodied

P  P( ) P( ) +          P +

Figure 4. The effective probability scattering from the initial AO probabilities Pχ of non-bonded

atoms (input) to the geometrically promoted AO probabilities P
+
χ in the MO Hilbert space.
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in the MO-occupations, which distinguish one electron configuration of the mol-
ecule from another. In what follows we shall examine the configuration physi-
cal-promotion channels, due to the probability scattering via the occupied MO
alone.

2.3. Physical information channels

In the specified state of the molecule only the occupied MO of the given
electron configuration (c) of the molecule influence the physical promotion of the
free-atom electrons from the occupied to unoccupied AO. In order to separate
out the configuration virtual MO in the orbital communication system shown
in figure 5, the physical analog of the information channel of figure 2, one has
to take into account the configuration MO-probability vector, Pc

ψ = {Pc
i =

nc
i/N }, defined by the MO occupations nc = {nc

i }, which now determine the phys-
ical input distribution.

This physical MO→AO communication system explores only the active part
of the geometrical channel, the so called physical subchannel representing the
active part of the whole geometric information system for the molecular electron
configuration in question. This projection of the occupied MO scattering can be
accomplished geometrically through the physical MO-projection (density opera-
tor) defined in terms of the diagonal matrix of the MO occupations, nc = {nc

i δi, j }:
D̂c = |ψ〉 nc 〈ψ | =

∑

i

|ψi 〉 nc
i 〈ψi | ≡

∑

i

D̂c
i

=
∑

σ

∣∣ψσc
〉

nσc
〈
ψσc

∣∣ =
∑

σ

∑

i

∣∣ψσi
〉

nσi
〈
ψσi

∣∣ =
∑

σ

∑

i

D̂σ
i =

∑

σ

D̂σ
c . (17)

Its matrix representation in the adopted AO basis set defines the
MO-ensemble density matrix,

Dc = 〈χ |D̂c|χ〉 = CncC† ≡ 〈χ |
∑

σ

D̂σ
c |χ〉 = (Dα

c + Dβ
c )

= P(χ |ψc) = {Pc(k|i)}, (18)

where ψc = {ψc
i } groups the configuration occupied MO. It represents the spin-

less charge-and-bond-order (CBO) matrix of the LCAO MO theory, the sum of its
two spin components {Dσ

c }. As also indicated in equation (18) the density matrix

n c c             P( c) * Nc
*

Figure 5. The physical MO→AO information channel for the molecular electron configuration
nc = {nc

i } with the MO-input nc
ψ = nc. The product P∗

χ = nc
ψP(χ |ψc) = N∗

c , where ψc denotes the
configuration occupied MO, defines the effective, promoted occupations N∗ of AO in the specified

molecular state.
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Dc represents the conditional probabilities determining the information channel
of figure 5, which represents the configuration physical (active) part of the whole
geometrical communication network. The configuration unoccupied part ψu of
the complete set of MO ψ = (ψc,ψu) represent the unphysical part of the whole
geometric channel, which remains inactive in the configuration MO→AO prob-
ability scattering (see figure 6).

The physical AO → AO∗ probability promotion in the given molecular
electron configuration is thus obtained by combining the geometric AO → MO
channel of figure 1 with the physical subchannel of figure 5. The resulting infor-
mation cascade in orbital resolution is shown in figure 6.

The initial AO occupations are changed in the molecule, due to delocal-
ization of electrons via a network of the occupied MO, to the physically “pro-
moted” occupations N∗

c = {N∗
k }. This combined channel defines the resultant

physical AO → AO∗ probability scattering shown in figure 7.
This effective physical channel linking the promolecule occupied AO χ and the

molecule occupied AO χ∗ is thus determined by the conditional probability matrix:

P(χ∗|χ) = P(ψc|χ)ncP(χ∗|ψc) ≡ {P(l∗ |k ) =
c∑

i

P(l∗ |i ) nc
i P(i |k )

=
∑

i

〈ψi |P̂l |ψi 〉nc
i 〈ψi |P̂k |ψi 〉 ≡

∑

i

〈ψi |P̂lD̂c
i P̂k |ψi 〉}, (19)

where we have used the occupation-weighted MO projections {D̂c
i = nc

i P̂i } of
equation (17).

The conditional-entropy of the promoted (molecular) AO output, given the
initial (promolecular) AO intput (see equation (13)),

S(χ∗|χ) = −
o∑

k

Pk

c∑

l

P(l∗ |k ) log P(l∗ |k ) (20)

measures the average communication “noise” in the information channel of fig-
ure 7. It was shown previously [14–23] to represent a realistic IT descriptor of
the molecular entropy-covalency. It reflects the extra uncertainty in the molecu-
lar electron distribution, due to AO delocalization effects in the system occupied

P P(  ) ⎥
⎦

⎤
⎢
⎣

⎡
→→
→→

*uu

*cc

)(

)(

0

P
           Nc

*

Figure 6. The orbitally resolved molecular information “cascade,” from the initial AO probabilities
Pχ of the non-bonded atoms (input) to the physically promoted AO occupations N∗

c in the mol-
ecule. Here, 0(χ |ψu) denotes the zero rectangular matrix of conditional probabilities of AO given

the virtual MO in configuration c.
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P   P( c o) nc P( c c) c           Nc
*

Figure 7. The resultant probability scattering from the initial AO probabilities Pχ of the occu-
pied AO χ of the non-bonded atoms in the promolecular reference (input) to the effective (pro-
moted) AO occupations N∗

c in the molecular electron configuration c (output) exhibiting the MO
occupations nc.

MO, i.e., a sharing of the free-atom electrons among all constituent AO. This
spreading of the electron probability (density) throughout the whole molecular
system is indeed intuitively associated with the covalent component of the chem-
ical bond.

The mutual-information descriptor of this effective physical channel (see
equation (14)),

I (χ : χ∗) =
0∑

k

Pk

c∑

l

P(l∗ |k ) log[P(l∗ |k )/P∗
l ] = S(χ∗)− S(χ∗|χ), (21)

where S(χ∗) stands for the Shannon entropy (equation (15)) of the promoted
output AO probabilities in the specified molecular electron-configuration,

S(χ∗) = −
c∑

l

P∗
l log P∗

l , (22)

should reflect the information bond-ionicity [14–23]. It follows from equations
(20) and (21) that the overall IT-descriptor of the AO channel of figure 7 equals
the Shannon entropy of the physically promoted AO probabilities:

N (χ;χ∗) = S(χ∗|χ)+ I (χ : χ∗) = S(χ∗). (23)

Clearly, similar molecular information subchannels can be constructed for
the two spin orientations σ = (↑,↓). The spin-resolved input is then determined
by the ASO occupations Nσ

c and the MSO probabilities pσc = {pσi = nσi /N } or
p̄σc = { p̄σi = nσi /N

σ }, defining the associated diagonal matrices {nσc } = {nσi δi, j },
pσc = {pσi δi, j } or p̄σc = { p̄σi δi, j }. The physical AO → AO∗ scattering is then deter-
mined by the spin-resolved conditional probabilities P(ψσ |χ) (equation (6)) and
the relevant MSO occupations.

3. Illustrative ground-state applications

3.1. 2-AO model

The simplest model of the chemical bond [5–8, 14–18, 23] involves the inter-
action between the two orthogonal AO, χ = (a, b), originating from atoms A
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and B, respectively, which give rise to the two ortho-normal combinations, ψ =
(ψb, ψa), representing the bonding (ψb) and antibonding (ψa) MO:

ψb = P1/2a + Q1/2b, ψa = −Q1/2a + P1/2b, P + Q = 1. (24)

The shape of both MO is controlled by a single parameter, e.g., the conditional
probability P(a|ψb) = P(b|ψa) = P .

From the quantum-mechanical superposition principle one determines the
following (geometric) conditional probability matrix:

P(ψ |χ) = P(χ |ψ) =
[

P Q
Q P

]
. (25)

In the covalent (cov.) promolecule each free atom contributes a single elec-
tron each to form the chemical bond in the molecule AB, while in the coordina-
tion (coord.), DA-promolecule the two electrons originate from the donor (basic)
atom B. Therefore, the initial AO probability distributions in these two refer-
ences read: Pcov.

χ = (1/2, 1/2) and P D A.
χ = (0, 1). In the ground-state (singlet)

configuration [ψ2
b] the bonding MO is doubly occupied: n0 = (2, 0).

The conditional probabilities of equation (25) define the symmetric binary
channel of the geometric AO → MO probability scattering, which is shown in
figure 8 for a general AO input probabilities Pχ = (x, y = 1 − x). The cor-
responding MO → AO+ geometric channel for a general MO input probabili-
ties Pψ = (u, v = 1 − u) is shown in figure 9. They give rise to the effective
AO → MO → AO+ cascade of figure 10, which determines the effective geo-
metrical AO → AO+-promotion channel shown in figure 11. Its communication
connections are defined by the conditional probabilities (see equations (11) and
(25)):

P(χ+|χ) = P(ψ |χ)P(χ |ψ) =
[

P2 + Q2 2P Q
2P Q P2 + Q2

]
. (26)

Next, we shall examine the IT-descriptors of equations (13) and (14) of
the geometric AO promotion channel (figure 11), which, respectively, reflect the
entropy “covalency” and information “ionicity” of the whole orbital Hilbert space.
It follows from equations (13) and (26) that the conditional entropy of the geo-
metrically promoted output P+

χ , given the promolecular distribution Pχ = (x, y),

Figure 8. The geometric AO → MO channel in the 2-AO model (see figure 1).
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u a a+    u   + nP 
P
P

ν b b+ uP + nQ

Q Q

Q 

Figure 9. The geometric MO → AO+ communication channel in 2-AO model (see figure 2).

is input-independent:

S(χ+|χ) = −(P2 + Q2) log(P2 + Q2)− 2P Q log(2P Q) ≡ S(P). (27)

For the non-bonding polarization of MO, e.g., P = 0(Q = 1), when ψb = b,
ψa = −a, or P = 1(Q = 0), when ψb = a, ψa = b, this index identically van-
ishes: S(0) = S(1) = 0. Its maximum value is reached for the symmetrical/anti-
symmetrical/antisymmetrical MO, P = Q = 1/2 : S(1/2) = 1.

Therefore, as intuitively expected, the maximum entropy-covalency contained
in the shapes of MO, compared to the original AO, is exhibited by the symmetri-
cal combinations of AO, e.g., in the minimum-basis description of the σ -bond in
H2 or π -bond in ethylene. Such absence of the bond polarization is interpreted
in chemistry as manifestation of the vanishing bond ionicity. Indeed, the input-
dependent information-ionicity index of equation (14) can be shown to vanish for
such non-polarized shapes of MO. More specifically, the Shannon entropy of the
promoted AO-output distribution (equation (15) then reads (see figure 11):

S(χ+) = −s(x, P) log s(x, P)− [1 − s(x, P)] log[1 − s(x, P)] ≡ H(s), (28)

where H(s) denotes the familiar binary-entropy function. It reaches the maximum
value for s = 1/2, H(1/2) = 1, and vanishes for s = (0, 1). It also follows from
the expressions defining the output probabilities P+

χ = (s, t) in figure 11 that
s(1/2, P) = t (1/2, P) = 1/2, so that the output probability for the uniform input
is independent of the current polarization P of MO: H(s(1/2, P)) = H(1/2) = 1.
For the coordination promolecular input (x = 0, y = 1) the output probabilities
(s = 2P Q, t = P2 + Q2) give rise to H(s) = S(P) (equation (27)), and hence
(see equation (14)): I (χ :χ+) = H(s(x, P))− S(P) ≡ I (x, P) = 0.

The extremum of I (x, P) with respect to the input probability x determines
the so called information capacity [23, 30] of this geometric-promotion channel.
Since the conditional-entropy part of this difference is input-independent, the

x a Q a    xQ + yP    Q      a+ x(P2 + Q2) +2yPQ
P      P 
P      P 

y b Q b xP + yQ    Q      b+ 2xPQ + y(P2 + Q2)

Figure 10. The geometric AO → MO→ AO+ information cascade in 2-AO model (figure 3).
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x a P2 + Q2   a+    x(P2 + Q2) +2yPQ ≡ s

≡ – s

(x, P)
2PQ
2PQ

y b P2 + Q2 b+ 2xPQ + y(P2 + Q2) t(x, P) = 1  (x, P)

Figure 11. The geometric AO → AO + promotion channel in 2-AO model (figures 4 and 10).

x a 2P2   a* 2P(xP + yQ)
2PQ
2PQ

y b 2Q2 b* 2Q(xP + yQ)

Figure 12. The physical AO → AO∗ promotion channel in 2-AO model (see figure 7).

maximum of I (x, P) is determined by the condition of the maximum of the out-
put entropy H(s(x, P)),

∂H

∂x
= ∂H

∂s

∂s

∂x
= (P − Q)2 log

(
1 − s

s

)
= 0. (29)

Hence the extremum of the geometric information-ionicity index I (x, P) is
observed for non-polarized MO, P = Q = 1/2, when s = t = 1/2 for any admis-
sible value of the input-probability parameter 0 � x � 1, and hence I (x, P =
1/2) = 0. The output probabilities are then independent of the input probabilities,
as indeed manifested by the vanishing value of their mutual information index,
which marks the zero amount of information flowing through the geometric pro-
motion channel.

In the ground-state (singlet) electron configuration Ψ0 = ∣∣Ψ+
b ψ

−
b

∣∣ both elec-
trons occupy the bonding MO: n0 = (2, 0). The effective conditional probabili-
ties of the physical-promotion channel in AO resolution (see equation (19) and
figure 7) then read:

P0(χ∗|χ) = P(ψ |χ)n0P(χ |ψ) = 2
[

P2 P Q
P Q Q2

]
. (30)

They determine the physical AO-promotion channel shown in figure 12,
which probes only the electron delocalization via the bonding MO.

The relevant functions of the conditional-entropy S (IT-covalency), mutual-
information I (IT-ionicity), and overall bond-order N = I + S (IT-bond-mul-
tiplicity) for the covalent (electron-sharing) input x = y = 1/2 in this physical
AO-promotion channel read:

S(χ∗|χ) = 2H(P)− 1, I (χ : χ∗) = 1 − H(P), N (χ;χ∗) = H(P).

(31)
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For the symmetrical bonding-MO, P = Q = 1/2, when H(P) = 1, e.g., in
H2 or the π -bond in ethylene, this gives: S(χ∗|χ) = 1, I (χ :χ∗) = 0, and N (χ ;
χ∗) = 1, thus correctly marking the single, purely covalent bond in these two
prototype systems. These predictions are only in partial agreement with the cor-
responding IT-indices obtained from the two-electron molecular information sys-
tem in atomic resolution [14–23], which generate the conserved “single” overall
bond in the model:

SAIM = H(P), I AIM = 1 − H(P), N AIM = 1. (32)

The symmetrical AO combination P = Q = 1/2 again gives a single, purely
covalent bond-order, SAIM = N AIM = 1 bit and I AIM = 0, in full agreement
with the present orbital-channel predictions.

Consider now the extreme polarization P = 1, when H(P) = 0 and ψb = a
(no chemical interaction between the two AO), so that the two electrons are
located on atom A in the molecule. One then finds: S(χ∗|χ) = −1, I (χ :χ∗) = 1,
and N (χ;χ∗) = 0. Therefore, this IT-diagnosis of the lone-pair molecular con-
figuration predicts no overall bond in the model. The IT-ionicity index reflects
the electron transfer relative to the promolecule, while the negative IT-covalency
identifies the non-bonding electron pair. This diagnosis differs from the AIM-
resolved two-electron description (equation (32)) of this electron configuration
[14–23], which predicts the conserved overall bond-order relative to the covalent
promolecule, when the bonding MO becomes polarized to AO of the acceptor
(acidic) atom A: SAIM = 0, I AIM = 1, N AIM = 1.

Let us next examine the IT-descriptors generated by the physical AO-pro-
motion channel for the DA (pair-sharing) promolecule, for x = 0, when the free
(basic) atom B0 donates two electrons to form the coordination bond B → A
in the molecule. Since in this case the output entropy S(χ∗) is exactly equal to
the conditional entropy S(χ∗|χ), the information-ionicity index vanishes for all
admissible MO polarizations P:

S(χ∗|χ) = N (χ;χ∗) = 2Q[H(P)− log Q − 1], I (χ : χ∗) = 0. (33)

Thus, the covalent component amounts to the total bond index in this orbi-
tal description. In the coordination-bond case it is in fact impossible to separate
the bond covalency, resulting from the charge transfer between atoms, from its
ionicity, which originates from the same effect. Therefore, attributing the whole
bond-multiplicity to the covalent component alone gives a more transparent
description of the coordination bond. These results are more in line with the
accepted chemical intuition, compared to the previously designed two-electron
indices from the AIM-channel [14–23], in which the covalent (positive) and ionic
(negative) components give rise to the vanishing overall index:

SAIM = −I AIM = H(P), N AIM = 0. (34)
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For the maximum-covalency bond polarization P = Q = 1/2 one again
obtains from equation (33) S = N = 1 (a single coordination bond), which
accords with the accepted chemical viewpoint. As shown in the DA orbital dia-
gram of figure 13, the coordination promolecule reference (x = 0), with two elec-
trons originating from atom B, differs from the bond-dissociation limit (P = 1),
in which the lone-pair of electrons is located on atom A. This bond-breaking con-
figuration indeed gives S = I = N = 0, in full accord with the chemical intuition.

3.2. π -electron systems in Hückel theory

Consider next the π -MO, π = {πi } of allyl radical in the Hückel approxi-
mation for the consecutive numbering of carbon atoms in the π -electron system,

π1 = 1
2
(χ1 + χ3)+

√
2

2
χ2, π2 =

√
2

2
(χ1 − χ3),

π3 = 1
2
(χ1 + χ3)−

√
2

2
χ2. (35)

a =  Q1/2a + P1/2b

b
x = 0 

a
P  1 b = P1/2a + Q1/2b→

Figure 13. The interaction of two atomic orbitals a (from the acidic atom A) and b (from the basic
atom A). The complementary MO probabilities P and Q = 1 − P , P > Q, determine the AO mix-
ing in both MO. In this schematic orbital-energy diagram, the coordination promolecule is deter-
mined by the AO-input probability x = 0 (lone electron pair on B), while the bond-dissociation

corresponds to P → 1 limit (lone electron pair on A).
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They generate the conditional probabilities of MO given AO, or AO given
MO:

P(π |χ) =
⎡

⎣
1/4 1/2 1/4
1/2 0 1/2
1/4 1/2 1/4

⎤

⎦ = P(χ |π)T , (36)

which give rise to the associated π -electron AO → MO or MO → AO geometric
channels. The resultant geometric-promotion probabilities,

P(χ+|χ) =
⎡

⎣
3/8 1/4 3/8
1/4 1/2 1/4
3/8 1/4 3/8

⎤

⎦ (37)

then define the effective AO → AO+ information system shown in figure 14.
The resulting IT-indices of this geometric channel,

S(χ+|χ) = 1.541 = S(χ∗|χ), I (χ : χ+) = 0.044 = I (χ : χ∗),
N (χ;χ+) = 1.585 = N (χ;χ∗), (38)

again compare favorably with the previously reported entropy/information bond-
indices obtained within the two-electron approach in atomic resolution [23]:

SAIM = 1.524, I AIM = 0.061, N AIM = 1.585. (39)

They both predict roughly IT-(3/2) bond of mainly entropy-covalent character.
The ground-state MO occupations of this radical, n0 = (2, 1, 0), give rise to

the physical AO-promotion channel, which is found to be identical with the geo-
metric channel of figure 14. Therefore, the physical-promotion IT descriptors of
π -bonds in allyl are identical in the Hückel approximation with the correspond-
ing geometric entropy/information indices (equation (38)), which were shown to
semi-quantitatively reproduce the previously reported π bond-orders from the al-
lyl two-electron AIM information system (equation (39)).

In butadiene the pairs of carbon AO, G I = (χ1, χ4) and G I I = (χ2, χ3),
group the basis functions related by symmetry. Let us now introduce the group

3,1χ +,∗
3,1

χ
¼
¼

2
χ ½

+,∗
2χ

Figure 14. The geometric AO → AO+ and physical (ground-state) AO → AO∗ promotion channel
of π -electrons in allyl (Hückel theory).
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complementary conditional probabilities (p, q = 1 − p) for the specified MO of
π -electrons, {πi , i = 1, . . . , 4},

π1 = a(χ1 + χ4)+ b(χ2 + χ3), π2 = b(χ1 − χ4)+ a(χ2 − χ3),

π3 = b(χ1 + χ4)− a(χ2 + χ3), π4 = a(χ1 − χ4)− b(χ2 − χ3),

a = 1
2

√
1 − 1/

√
5 = 0.37175, b = 1

2

√
1 + 1/

√
5 = 0.60150, (40)

P(I|π1) = P(I I |π2) = P(I I |π3) = P(I |π4) = 2a2 ≡ p = 0.27639,

P(II|π1) = P(I |π2) = P(I |π3) = P(I I |π4) = 2b2 ≡ q = 0.72361. (41)

These MO generate the geometric-promotion channel shown in figure 15.
The corresponding geometric-promotion indices from IT are:

S(χ+|χ) = 1.971 = S(χ∗|χ), I (χ : χ+) = 0.029 = I (χ : χ∗),
N (χ;χ+) = 2.000 = N (χ;χ∗). (42)

This result again compares favorably with the previously reported IT bond-
orders from the π -communication channels in atomic resolution within the two-
electron approach [14, 15, 21, 23]:

SAIM = 1.944, I AIM = 0.056, N AIM = 2.000. (43)

They both predict 2-bits (IT-double) overall bond index of mainly entropy-cova-
lent origin, in qualitative agreement with the chemical estimate.

By taking into account the ground-state occupation of these four MO, n0 =
(2, 2, 0, 0), one again finds that in the Hückel theory the ground-state physical
AO-promotion is identical with the geometric information system of figure 15,
thus giving rise to the same IT bond descriptors (equation (42)), which agree
with intuitive chemical expectations.

As the final example of the geometric AO → AO+ promotion we consider the
π -electron ring in benzene [14, 15, 21, 23]. The familiar canonical MO from in

¼ 4,1χ ½(p2 + q2)           ¼ ,*
4,1

+χ
pq
pq

¼ 3,2χ ½(p2 + q2) ,*
3,2

+χ ¼

Figure 15. The geometric AO → AO+ and physical (ground-state) AO → AO∗ promotion
of π -electrons in butadiene (Hückel theory).
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the Hückel method for the consecutive numbering of carbon atoms in the hex-
agonal π -ring,

π1 = 6−1/2(χ1 + χ2 + χ3 + χ4 + χ5 + χ6),

π2 = 1/2(χ1 + χ2 − χ4 − χ5), π ′
2 = 12−1/2(χ1 − χ2 − 2χ3 − χ4 + χ5 + 2χ6),

π3 = 1/2(χ1 − χ2 + χ4 − χ5), π ′
3 = 12−1/2(χ1 + χ2 − 2χ3 + χ4 + χ5 − 2χ6),

π4 = 6−1/2(χ1 − χ2 + χ3 − χ4 + χ5 − χ6) (44)

give rise to the geometric-promotion channel shown in figure 16. A subsequent
inclusion of the ground-state MO-occupations n0 = (2, 2, 2, 0, 0, 0) then shows
that in the Hückel approximation the associated physical AO-promotion channel
is identical with the geometric communication system of figure 16.

Their entropy/information descriptors,

S(χ+|χ) = S(χ∗|χ) = 2.506, I (χ : χ+) = I (χ : χ∗) = 0.079,

N (χ;χ+) = N (χ;χ∗) = 2.585, (45)

again provide quite realistic representation of the related indices of the two-
electron communication approach in atomic resolution:

SAIM = 2.551, I AIM = 0.035, N AIM = 2.585. (46)

In both approaches the overall IT-index 2.585 is dominated by the entropy-cov-
alency with the information-ionic component amounting to a minor correction
in the resultant bond-multiplicity.

It should be stressed, that this overall IT bond-order falls short of the
3-bits measure predicted for the three separated π -bonds in cyclohexatriene [14,
15, 21, 23]. This result reflects the fact that in the symmetric hexagon structure,
prevailed due to carbon–carbon σ -bonds, the system compromises the overall
π -bond-order, which otherwise could reach higher values, should the bond alter-
nation be allowed [32–34].

1/6 5,4,2,1χ 7/36 1/6+,∗
5,4,2,1χ

1/9
       1/9

1/6 6,3χ         5/18 +,∗
6,3χ 1/6

Figure 16. The geometric and physical (ground-state) AO → AO promotion of π -electrons in
benzene (Hückel theory).
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4. Conclusion

In this article, we have extended the communication theory of the chemical
bond [23] by examining several molecular information channels within the MO
description, which provides the standard framework for diagnosing the system
bond network. They are determined by the conditional probabilities P(AO|MO)
[or P(MO|AO)] from the superposition principle of quantum mechanics, which
are defined by the relevant projection operators in the Hilbert space spanned by
the AO basis set or – equivalently – by the complete set of the resulting MO.

The so-called “geometric” channels involve the AO → MO [or MO → AO]
scattering of the initial (promolecular, input) probabilities via the whole set
of MO, occupied and virtual in the molecular electron configuration in ques-
tion. Throughout the associated AO → MO(all) → AO+ probability cascade they
determine the effective geometric AO → AO+ “promotion,” from the initial pro-
molecular distribution to that characterizing the equally weighed MO. Its stan-
dard conditional-entropy and mutual-information descriptors in IT reflect the
overall rotation of MO relative to AO in the molecular Hilbert space, thus pro-
viding the measures of the overall MO entropy-covalency and information-ion-
icity in the molecular system under consideration. The illustrative applications
to the 2-AO model and π -electrons in simple alternant hydrocarbons have dem-
onstrated that these IT-indices compare favorably with the previously reported
entropy/information bond-orders developed within the two-electron approach in
atomic resolution.

The other, “physical” set of molecular channels involves the MO-occu-
pation weighted probability scattering. It distinguishes one electron configu-
ration from another, thus providing a convenient framework for diagnosing
the bonding pattern in the molecular excited states. This development will be
described in the next paper of this series [35]. The “physical” (ground-state)
AO→AO∗ promotion channel, resulting from the probability-scattering cascade
AO→MO(occupied)→AO∗, have also been shown to give a realistic account of
the overall bond-multiplicities in the selected illustrative systems. In the Hückel
theory description of the alternant hydrocarbons these physical-promotion chan-
nels have been found to be identical with the corresponding geometrical-promo-
tion information systems, thus generating the same sets of the IT bond-indices.

This orbital development within the communication approach to chemi-
cal bonds in molecular systems provides their information-theoretic description,
which complements the standard MO perspective [18]. It explores the AO prob-
ability scattering in molecules via the network of chemical bonds and generates
the associated IT-measures of their covalent and ionic components. The bond-
covalency measures the average communication-“noise” in the orbital channel,
while the bond-ionicity reflects the amount of the promolecular information
flowing through the channel, which has survived the increase in the orbital
uncertainty due to the noise. This IT description gives a transparent account of
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the competition between these two bond components, which accords with the
chemical intuitive expectations.
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